Publications

Articles


(87) Sahrawat, U.; Garg, R.; Anjum, F.; Salam A.; Kaushik, K.; Sapkal, G. T.; Nandi, C. K. One-Pot Synthesis of Orange Emissive Carbon Dots Specific for Staining of Mitochondria in both Cancer and Non-Cancer Cell Lines. ChemNanoMat. 2024, 202300628. https://doi.org/10.1002/cnma.202300628

(86) Kaushik, K.; Mondal, J.; Bag, R. K.; Sharma, S.; Anjum, F.; Nandi, C. K. Unusual Excitation Wavelength Dependency of Quantum Yield in Water Soluble CdTe Quantum Dots. Research Square 2024 (Pre-print). https://doi.org/10.21203/rs.3.rs-3999532/v

(85) Sharma, S.; Kaushik, K.; Salam A.; Garg, R.; Mondal, J.; Lamba, R.; Kaur, M.; Nandi, C. K. Recent Advances in Long-Lived Emission in Coinage Metal Nanoclusters: Implications for Optoelectronic Applications. ACS Appl. Nano Mater. 2024, 7 (1), 32-60. https://doi.org/10.1021/acsanm.3c04748

(84) Anjum, F.; Kaushik, K.; Salam A.; Yadav, A.; Nandi, C. K. Super‐Resolution Microscopy Unveils Synergistic Structural Changes of Organelles Upon Point Mutation. Adv. Biology 2023, 8 (3), 2300399. https://doi.org/10.1002/adbi.202300399

(83) Garg, R.; Anjum, F.; Salam, A.; Kaushik, K.; Sharma, S.; Sahrawat, U.; Yadav, A.; Nandi, C. K. Tracking Super Resolved Structure of Mitochondria using Red emissive Carbon Nanodots as Fluorescent Biomarker. Chem. Commun. 2023, 59 (90), 13454-13457.  https://doi.org/10.1002/adbi.202300399

(82) Sharma, S.; Das, S..; Kaushik K.; Yadav, A.; Patra A.; Nandi, C. K. Unveiling the Long-Lived Emission of Copper Nanoclusters Embedded in Protein Scaffold. J. Phys. Chem. Lett. 2023, 14 (40), 8979-8987. https://doi.org/10.1021/acs.jpclett.3c01877

(81) Chen, L.; Gharib, M.; Zeng, Y.; Roy, S.; Nandi, C. K.; Chakraborty, I. Advances in bovine serum albumin-protected gold nanoclusters: from understanding the formation mechanisms to biological applications. Materials Today Chemistry 2023, 29, 101460-101486. https://doi.org/10.1016/j.mtchem.2023.101460

(80) Anjum, F.; Rao, C.; Yadav, A.; Kaushik, K.; Mishra, P. M.; Nandi, C. K. Directly Visualizing Mitochondrial Shrinkage and Lysosomal Expansion During Mitophagy using Super Resolution Microscopy. New J. Chem. 2022, 46 (42), 20069-20073. https://doi.org/10.1039/D2NJ04010G

(79) Saini, R.; Rao, C.; Maji, A.; Mishra, P. M.; Yadav, A.; Nandi, C. K.; Ghosh, K. Design and Synthesis of Novel Palladium cyclometallate-based Fluorescent Probe: Studies on Interaction with Cell Membrane by Confocal and Fluorescence Lifetime Imaging. J. Inorg. Biochem. 2022, 237, 112019 . https://doi.org/10.1016/j.jinorgbio.2022.112019

(78) Kaushik, K.; Yadav, A.; Anjum, F.; Mishra, P. M.; Sharma, S.; Rao, C.; Nandi, C. K. Protein Conjugation helped CdTe Quantum Dots for the Specific Labeling and Super-Resolution Imaging of Lysosomes. ChemNanoMat. 2022, 8 (10), e202200235. https://doi.org/10.1002/cnma.202200235

(77) Qiu, K.; Yadav, A.; Tian, Z.; Guo, Z.; Shi, D.; Nandi, C. K.; Diao, J. Ultra-Long-Term Super-Resolution Tracking of Lysosomes in Brain Organoids by Near-Infrared Noble Metal Nanoclusters. ACS Materials Letters. 2022, 4 (9), 1565–1573. https://doi.org/10.1021/acsmaterialslett.2c00436

(76) Mishra, P. M.; Anjum, F.; Uversky, V. N.; Nandi, C. K. SARS-CoV-2 Spike mutations modify the interaction between virus Spike and human ACE2 receptors. Biochemical and Biophysical Research Communications. 2022, 620, 8-14. https://doi.org/10.1016/j.bbrc.2022.06.064

(75) Rao, C.; Sharma, S.; Garg, R.; Anjum, F.; Kaushik, K.; Nandi, C. K. Mapping the Time Dependent DNA Fragmentation caused by doxorubicin Loaded on PEGylated Carbogenic Nanodots using Fluorescence Lifetime Imaging and Super-resolution microscopy. Biomaterials Science. 2022, 10 (16), 4525-4537. https://doi.org/10.1039/D2BM00641C 

(74) Yadav, A.; Kaushik, K.; Sharma, S.; Anjum, F.; Nandi, C. K. Near-Infrared-Emitting Ag Nanoclusters as Fluorescent Probes for Super-Resolution Radial Fluctuation Imaging of Lysosomes. ACS Appl. Nano Mater. 2022, 5 (7), 9260-9265. https://doi.org/10.1021/acsanm.2c01604

(73) Singh, S.; Rao, C.; Nandi, C. K.; Mukherjee, T. K. Quantum Dot‐Embedded Hybrid Photocatalytic Nanoreactors for Visible‐light Photocatalysis and Dye Degradation. ACS Appl. Nano Mater. 2022, 5 (5), 7427–7439. https://doi.org/10.1021/acsanm.2c01446

(72) Yadav, A.; Rao, C.; Kaushik, K.; Anjum, F.; Sharma, S.; Nandi, C. K. Superparamagnetic Iron Oxides Nanoparticles with Large Magnetic Saturation and High Particle Photon Counts for Super Resolution Imaging of Lysosomes. ACS Appl. Nano Mater. 2022, 5 (3), 4018–4027. https://doi.org/10.1021/acsanm.2c00011

(71) Batra, G.; Sharma, S.; Kaushik, K.; Rao, C.; Kumar, P.; Kumar, K.; Ghosh, S.; Jariwala, D.; Stach, E. A.; Yadav, A.; Nandi, C. K. Structural and Spectroscopic Characterization of Pyrene Derived Carbon Nano Dots: A Single-Particle Level Analysis. Nanoscale 2022, 14(9), 3568-3578. https://doi.org/10.1039/D1NR07190D

(70) Gupta, S.; Mishra, D. K.; Khan, M. Z.; Saini, V.; Mehta, D.; Kumar, S.; Yadav, A.; Mitra, M.; Rani, P.; Singh, M.; Nandi, C. K.; Das, P.; Ahuja, V.; Nandicoori, V. K.; Bajaj, A. Development of a Highly Specific, Selective, and Sensitive Fluorescent Probe for Detection of Mycobacteria in Human Tissues. Adv. Healthcare Mater. 2022, 11 (10), 2102640. https://doi.org/10.1002/adhm.202102640

(69) Yadav, R.; Yadav, A.; Sharma, S.; Rao, C.; Nandi, C. K. Shedding Light onto the Photoluminesce Origin in Carbon Nanodots Synthesized via Top-down Method. ISRAPS Bulletin 2021, 33 (1). [View]

(68) Mishra, P. M.; Rao, C.; Sarkar, A.; Yadav, A.; Kaushik, K.; Jaiswal, A.; Nandi, C. K. Super Resolution Microscopy Revealed the Lysosomal Expansion during Epigallocatechin Gallate Mediated Apoptosis. Langmuir 2021, 37 (36), 10818–10826. https://doi.org/10.1021/acs.langmuir.1c01742

(67) Mishra, P. M.; Nandi, C. K. Structural Decoding of Small Molecular Inhibitor on the Binding of SARS-CoV-2 to ACE2 Receptor. J. Phys. Chem. B 2021, 125 (30), 8395–8405. https://doi.org/10.1021/acs.jpcb.1c03294

(66) Rao, C.; Patel, S. K.; Prasad, A.; Garg, N.; Nandi, C. K. The Effect of Protein Corona on The Drug Delivery of Carbogenic Nanodots and their Mapping by Fluorescence Lifetime Imaging Microscopy. ACS Appl. Bio Mater. 2021, 4 (7), 5776–5785. https://doi.org/10.1021/acsabm.1c00526

(65) Wang, F.; Yang, X.; Zhan, Q.; Nandi, C. K. Recent Advances in Fluorescent Probes for Super-Resolution Microscopy. Front. Chem., 2021, 9, 1-2. https://doi.org/10.3389/fchem.2021.698531

(64) Batra, G.; Sharma, S.; Kaushik, K.; Rao, C.; Kumar, P.; Kumar, K.; Ghosh, S.; Jariwala, D.; Stach, E. A.; Yadav, A.; Nandi, C. K. Structural and Spectroscopic Characterization of Pyrene Derived Carbon Nano Dots: A Single Particle Level Analysis. ChemRxiv. Cambridge: Cambridge Open Engage; 2021 (Pre-Print). https://doi.org/10.33774/chemrxiv-2021-8gl92-v2 

(63) Soni, N.; Singh, S.; Sharma, S.; Batra, G.; Kaushik, K.; Rao, C.; Verma, N. C.; Mondal, B.; Yadav, A.; Nandi, C. K. Absorption and Emission of Light in Red Emissive Carbon Nanodots. Chem. Sci. 2021, 12, 3615-3626. https://doi.org/10.1039/d0sc05879c

(62) Verma, N. C.; Yadav, A.; Rao, C.; Mishra, P. M.; Nandi, C. K. Emergence of Carbon Nanodots as a Probe for Super-Resolution Microscopy. J. Phys. Chem. C 2021, 125 (3), 1637–1653. https://doi.org/10.1021/acs.jpcc.0c09695

(61) Yadav, A.; Rao, C.; Nandi, C. K. Fluorescent Probes for Super-Resolution Microscopy of Lysosomes. ACS Omega 2020, 5 (42), 26967–26977. https://doi.org/10.1021/acsomega.0c04018

(60) Tiwari, A.; Verma, N. C.; Turkkan, S.; Debnath, A.; Singh, A.; Draeger, G.; Nandi, C. K.; Randhawa, J. K. Graphitic Carbon Coated Magnetite Nanoparticles for Dual Mode Imaging and Hyperthermia. ACS Appl. Nano Mater. 2020, 3 (1), 896–904. https://doi.org/10.1021/acsanm.9b02501

(59) Kumar, P.; Thakar, K.; Verma, N. C.; Biswas, J.; Maeda, T.; Roy, A.; Kaneko, K.; Nandi, C. K.; Lodha, S.; Balakrishnan, V. Polymorphic In-Plane Heterostructures of Monolayer WS2 for Light-Triggered Field-Effect Transistors. ACS Appl. Nano Mater. 2020, 3 (4), 3750–3759. https://doi.org/10.1021/acsanm.0c00027

(58) Mani Mishra, P.; Uversky, V. N.; Nandi, C. K. Serum Albumin-Mediated Strategy for the Effective Targeting of SARS-CoV-2. Med. Hypotheses 2020, 140, 109790. https://doi.org/10.1016/j.mehy.2020.109790

(57) Yadav, A.; Rao, C.; Verma, N. C.; Mishra, P. M.; Nandi, C. K. Magnetofluorescent Nanoprobe for Multimodal and Multicolor Bioimaging. Mol. Imaging 2020, 19, 153601212096947. https://doi.org/10.1177/1536012120969477

(56) Rao, C.; Mishra, P. M.; Yadav, A.; Nandi, C. K. Cancer Cell Membrane Technology for Cancer Therapy. ChemNanoMat 2020, 6 (12), 1712–1729. https://doi.org/10.1002/cnma.202000482

(55) Yadav, A.; Verma, N. C.; Rao, C.; Mishra, P. M.; Jaiswal, A.; Nandi, C. K. Bovine Serum Albumin-Conjugated Red Emissive Gold Nanocluster as a Fluorescent Nanoprobe for Super-Resolution Microscopy. J. Phys. Chem. Lett. 2020, 11 (14), 5741–5748. https://doi.org/10.1021/acs.jpclett.0c01354

(54) Rao, C.; Yadav, A.; Kaur, R.; Prasad, A.; Nandi, C. K. Direct Visualization of the Protein Corona Using Carbon Nanodots as a Specific Contrasting Agent. Chem. Commun. 2020, 56 (88), 13599–13602. https://doi.org/10.1039/d0cc06333a

(53) Rao, C.; Singh, A.; Verma, N. C.; Garg, N.; Nandi, C. K. One Pot Synthesis of Amphiphilic Carbogenic Fluorescent Nanodots for Bioimaging. ChemNanoMat 2019, 5 (4), 417–421. https://doi.org/10.1002/cnma.201800663

(52) Butkevich, E.; Verma, N. C.; Oleksiievets, N.; Gregor, I.; Schmidt, C. F.; Enderlein, J.; Nandi, C. K.; Chizhik, A. I. Carbon Dots for Studying Muscle Architecture. ACS Appl. Nano Mater. 2019, 2 (12), 7466–7472. https://doi.org/10.1021/acsanm.9b01815

(51) Rao, C.; Verma, N. C.; Nandi, C. K. Unveiling the Hydrogen Bonding Network of Intracellular Water by Fluorescence Lifetime Imaging Microscopy. J. Phys. Chem. C 2019, 123 (4), 2673–2677. https://doi.org/10.1021/acs.jpcc.8b12439

(50) Tiwari, A.; Verma, N. C.; Randhawa, J. K.; Nandi, C. K. Real-Time Observation of Magnetic Field-Induced Fluorescence Engineering in SPIONs. J. Phys. Chem. C 2019, 123 (45), 27759–27764. https://doi.org/10.1021/acs.jpcc.9b07261

(49) Verma, N. C.; Rao, C.; Singh, A.; Garg, N.; Nandi, C. K. Dual Responsive Specifically Labelled Carbogenic Fluorescent Nanodots for Super Resolution and Electron Microscopy. Nanoscale 2019, 11 (14), 6561–6565. https://doi.org/10.1039/c9nr00457b

(48) Verma, N. C.; Yadav, A.; Nandi, C. K. Paving the Path to the Future of Carbogenic Nanodots. Nat. Commun. 2019, 10 (1), 2391. https://doi.org/10.1038/s41467-019-10394-8

(47) Khan, S.; Verma, N. C.; Chethana; Nandi, C. K. Carbon Dots for Single-Molecule Imaging of the Nucleolus. ACS Appl. Nano Mater. 2018, 1 (2), 483–487. https://doi.org/10.1021/acsanm.7b00175

(46) Kumar, P.; Verma, N. C.; Goyal, N.; Biswas, J.; Lodha, S.; Nandi, C. K.; Balakrishnan, V. Phase Engineering of Seamless Heterophase Homojunctions with Co-Existing 3R and 2H Phases in WS2 Monolayers. Nanoscale 2018, 10 (7), 3320–3330. https://doi.org/10.1039/c7nr08303c

(45) Verma, N. C.; Rao, C.; Nandi, C. K. Nitrogen-Doped Biocompatible Carbon Dot as a Fluorescent Probe for STORM Nanoscopy. J. Phys. Chem. C 2018, 122 (8), 4704–4709. https://doi.org/10.1021/acs.jpcc.7b12773

(44) Dwivedi, C.; Chaudhary, A.; Srinivasan, S.; Nandi, C. K. Polymer Stabilized Bimetallic Alloy Nanoparticles: Synthesis and Catalytic Application. Colloids Interface Sci. Commun. 2018, 24, 62–67. https://doi.org/10.1016/j.colcom.2018.04.001

(43) Khan, S.; Verma, N. C.; Gupta, P.; Jain, S.; Ghosh, S.; Nandi, C. K. Mechanistic Insight into the Carbon Dots: Protonation Induced Photoluminescence. J Mater. Sci Eng 2018, 7 (3), 448. https://doi.org/10.4172/2169-0022.1000448

(42) Tiwari, A.; Verma, N. C.; Singh, A.; Nandi, C. K.; Randhawa, J. K. Carbon Coated Core-Shell Multifunctional Fluorescent SPIONs. Nanoscale 2018, 10 (22), 10389–10394. https://doi.org/10.1039/c8nr01941j

(41) Khan, S.; Jain, S.; Nandi, C. K. Towards Understanding Citric Acid Derived High Quantum Yield Molecular Fluorophores: From Carbon Dots to Spherical Organic Nanocrystals. J Mater. Sci Eng 2018, 7 (5), 490. https://doi.org/10.4172/2169-0022.1000490

(40) Gupta, A.; Nandi, C. K. PC12 Live Cell Ultrasensitive Neurotransmitter Signaling Using High Quantum Yield Sulphur Doped Carbon Dots and Its Extracellular Ca2+ Ion Dependence. Sensors Actuators, B Chem. 2017, 245, 137–145. https://doi.org/10.1016/j.snb.2017.01.145

(39) Rao, C.; Khan, S.; Verma, N. C.; Nandi, C. K. Labelling Proteins with Carbon Nanodots. ChemBioChem 2017, 18 (24), 2385–2389. https://doi.org/10.1002/cbic.201700440

(38) Khan, S.; Li, W.; Karedla, N.; Thiart, J.; Gregor, I.; Chizhik, A. M.; Enderlein, J.; Nandi, C. K.; Chizhik, A. I. Charge-Driven Fluorescence Blinking in Carbon Nanodots. J. Phys. Chem. Lett. 2017, 8 (23), 5751–5757. https://doi.org/10.1021/acs.jpclett.7b02521

(37) Khan, S.; Sharma, A.; Ghoshal, S.; Jain, S.; Hazra, M. K.; Nandi, C. K. Small Molecular Organic Nanocrystals Resemble Carbon Nanodots in Terms of Their Properties. Chem. Sci. 2017, 9 (1), 175–180. https://doi.org/10.1039/c7sc02528a

(36) Salam Sarkar, A.; Rao, A. D.; Jagdish, A. K.; Gupta, A.; Nandi, C. K.; Ramamurthy, P. C.; Kalyan Pal, S. Facile Embedding of Gold Nanostructures in the Hole Transporting Layer for Efficient Polymer Solar Cells. Org. Electron. 2018, 54, 148–153. https://doi.org/10.1016/j.orgel.2017.12.029

(35) Chaudhary, A.; Khan, S.; Gupta, A.; Nandi, C. K. Effect of Surface Chemistry and Morphology of Gold Nanoparticle on the Structure and Activity of Common Blood Proteins. New J. Chem. 2016, 40 (6), 4879–4883. https://doi.org/10.1039/c5nj03720d

(34) Gupta, A.; Verma, N. C.; Khan, S.; Tiwari, S.; Chaudhary, A.; Nandi, C. K. Paper Strip Based and Live Cell Ultrasensitive Lead Sensor Using Carbon Dots Synthesized from Biological Media. Sensors Actuators, B Chem. 2016, 232, 107–114. https://doi.org/10.1016/j.snb.2016.03.110

(33) Gupta, A.; Verma, N. C.; Khan, S.; Nandi, C. K. Carbon Dots for Naked Eye Colorimetric Ultrasensitive Arsenic and Glutathione Detection. Biosens. Bioelectron. 2016, 81, 465–472. https://doi.org/10.1016/j.bios.2016.03.018

(32) Verma, N. C.; Khan, S.; Nandi, C. K. Single-Molecule Analysis of Fluorescent Carbon Dots towards Localization-Based Super-Resolution Microscopy. Methods Appl. Fluoresc. 2016, 4 (4), 044006. https://doi.org/10.1088/2050-6120/4/4/044006

(31) Khan, S.; Gupta, A.; Verma, N. C.; Nandi, C. K. Kinetics of Protein Adsorption on Gold Nanoparticle with Variable Protein Structure and Nanoparticle Size. J. Chem. Phys. 2015, 143 (16), 164709. https://doi.org/10.1063/1.4934605

(30) Chaudhary, A.; Gupta, A.; Nandi, C. K. Anisotropic Gold Nanoparticles for the Highly Sensitive Colorimetric Detection of Glucose in Human Urine. RSC Adv. 2015, 5 (51), 40849–40855. https://doi.org/10.1039/c4ra16690f

(29) Chaudhary, A.; Dwivedi, C.; Gupta, A.; Nandi, C. K. One Pot Synthesis of Doxorubicin Loaded Gold Nanoparticles for Sustained Drug Release. RSC Adv. 2015, 5 (118), 97330–97334. https://doi.org/10.1039/c5ra12892g

(28) Chaudhary, A.; Dwivedi, C.; Chawla, M.; Gupta, A.; Nandi, C. K. Lysine and Dithiothreitol Promoted Ultrasensitive Optical and Colorimetric Detection of Mercury Using Anisotropic Gold Nanoparticles. J. Mater. Chem. C 2015, 3 (27), 6962–6965. https://doi.org/10.1039/c5tc01397f

(27) Dwivedi, C.; Chaudhary, A.; Gupta, A.; Nandi, C. K. Direct Visualization of Lead Corona and Its Nanomolar Colorimetric Detection Using Anisotropic Gold Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7 (9), 5039–5044. https://doi.org/10.1021/am507495j

(26) Khan, S.; Verma, N. C.; Gupta, A.; Nandi, C. K. Reversible Photoswitching of Carbon Dots. Sci. Rep. 2015, 5 (1), 11423. https://doi.org/10.1038/srep11423

(25) Gupta, A.; Chaudhary, A.; Mehta, P.; Dwivedi, C.; Khan, S.; Verma, N. C.; Nandi, C. K. Nitrogen-Doped, Thiol-Functionalized Carbon Dots for Ultrasensitive Hg(Ii) Detection. Chem. Commun. 2015, 51 (53), 10750–10753. https://doi.org/10.1039/c5cc03019f

(24) Khan, S.; Gupta, A.; Verma, N. C.; Nandi, C. K. Time-Resolved Emission Reveals Ensemble of Emissive States as the Origin of Multicolor Fluorescence in Carbon Dots. Nano Lett. 2015, 15 (12), 8300–8305. https://doi.org/10.1021/acs.nanolett.5b03915

(23) Nandi, C. K.; Barth, H. D.; Brutschy, B. A New Liquid Droplet Laser Desorption Source Combined with Supersonic Jet Expansion: Application to Phenol and Its Water Clusters. Zeitschrift fur Phys. Chemie 2014, 228 (4–5), 449–457. https://doi.org/10.1515/zpch-2013-0460

(22) Khan, S.; Nandi, C. K. Optimizing the Underlying Parameters for Protein-Nanoparticle Interaction: Advancement in Theoretical Simulation. Nanotechnol. Rev. 2014, 3 (4), 347–359. https://doi.org/10.1515/ntrev-2014-0002

(21) Dey, G.; Gupta, A.; Mukherjee, T.; Gaur, P.; Chaudhary, A.; Mukhopadhyay, S. K.; Nandi, C. K.; Ghosh, S. Functional Molecular Lumino-Materials to Probe Serum Albumins: Solid Phase Selective Staining through Noncovalent Fluorescent Labeling. ACS Appl. Mater. Interfaces 2014, 6 (13), 10231–10237. https://doi.org/10.1021/am501619g

(20) Chaudhary, A.; Gupta, A.; Khan, S.; Nandi, C. K. Morphological Effect of Gold Nanoparticles on the Adsorption of Bovine Serum Albumin. Phys. Chem. Chem. Phys. 2014, 16 (38), 20471–20482. https://doi.org/10.1039/c4cp01515k

(19) Khan, S.; Gupta, A.; Chaudhary, A.; Nandi, C. K. Orientational Switching of Protein Conformation as a Function of Nanoparticle Curvature and Their Geometrical Fitting. J. Chem. Phys. 2014, 141 (8), 084707. https://doi.org/10.1063/1.4893441

(18) Dwivedi, C.; Gupta, A.; Chaudhary, A.; Nandi, C. K. Gold Nanoparticle Chitosan Composite Hydrogel Beads Show Efficient Removal of Methyl Parathion from Waste Water. RSC Adv. 2014, 4 (75), 39830–39838. https://doi.org/10.1039/c4ra03870c

(17) Sinha, S.; Kumar, S.; Koner, R. R.; Mathew, J.; Nandi, C. K.; Ghosh, S. Carboxylated “locking Unit” Directed Ratiometric Probe Design, Synthesis and Application in Selective Recognition of Fe3+/Cu2+. RSC Adv. 2013, 3 (18), 6271–6277. https://doi.org/10.1039/c3ra23442h

(16) Sinha, S.; Rani Koner, R.; Kumar, S.; Mathew, J.; Roy, A.; Kanti Mukhopadhyay, S.; Nandi, C. K.; Ghosh, S. Structurally Tuned Benzo[h]Chromene Derivative as Pb2+ Selective “turn-on” Fluorescence Sensor for Living Cell Imaging. J. Lumin. 2013, 143, 355–360. https://doi.org/10.1016/j.jlumin.2013.05.012

(15) Khan, S.; Gupta, A.; Nandi, C. K. Controlling the Fate of Protein Corona by Tuning Surface Properties of Nanoparticles. J. Phys. Chem. Lett. 2013, 4 (21), 3747–3752. https://doi.org/10.1021/jz401874u

(14) Koner, R. R.; Sinha, S.; Kumar, S.; Nandi, C. K.; Ghosh, S. 2-Aminopyridine Derivative as Fluorescence “On-Off” Molecular Switch for Selective Detection of Fe 3+/Hg 2+. Tetrahedron Lett. 2012, 53 (18), 2302–2307. https://doi.org/10.1016/j.tetlet.2012.02.094

(13) Nandi, C. K.; Parui, P. P.; Brutschy, B.; Scheffer, U.; Göbel, M. Fluorescence Correlation Spectroscopy at Single Molecule Level on the Tat–TAR Complex and Its Inhibitors. Biopolymers 2008, 89 (1), 17–25. https://doi.org/10.1002/bip.20835

(12) Nandi, C. K.; Parui, P. P.; Schmidt, T. L.; Heckel, A.; Brutschy, B. Binding of Hairpin Polyamides to DNA Studied by Fluorescence Correlation Spectroscopy for DNA Nanoarchitectures. Anal. Bioanal. Chem. 2008, 390 (6), 1595–1603. https://doi.org/10.1007/s00216-008-1852-z

(11) Schmidt, T. L.; Nandi, C. K.; Rasched, G.; Parui, P. P.; Brutschy, B.; Famulok, M.; Heckel, A. Polyamide Struts for DNA Architectures. Angew. Chemie Int. Ed. 2007, 46 (23), 4382–4384. https://doi.org/10.1002/anie.200700469

(10) Chervenkov, S.; Wang, P. Q.; Braun, J. E.; Georgiev, S.; Neusser, H. J.; Nandi, C. K.; Chakraborty, T. High-Resolution Ultraviolet Spectroscopy of p-Fluorostyrene-Water: Evidence for a σ-Type Hydrogen-Bonded Dimer. J. Chem. Phys. 2005, 122 (24), 244312. https://doi.org/10.1063/1.1937370

(9) Pradhan, B.; Singh, B. P.; Nandi, C. K.; Chakraborty, T.; Kundu, T. Origin of Methyl Torsional Barrier in 1-Methyl-2-(1H)-Pyridone. J. Chem. Phys. 2005, 122 (20), 204323. https://doi.org/10.1063/1.1901567

(8) Nandi, C. K.; Hazra, M. K.; Chakraborty, T. Vibrational Coupling in Carboxylic Acid Dimers. J. Chem. Phys. 2005, 123 (12), 124310. https://doi.org/10.1063/1.2039084

(7) Nandi, C. K.; Samanta, A. K.; Chakraborty, T. Identification of Isomeric Dimers of O-Fluorobenzoic Acid Using Laser-Induced Fluorescence Spectroscopy. Chem. Phys. Lett. 2005, 416 (4–6), 261–267. https://doi.org/10.1016/j.cplett.2005.09.087

(6) Nandi, C. K.; Chakraborty, T. Conformational Effects and Level Mixing in a Doubly Hydrogen-Bonded 1 : 1 Dimer of Acetic Acid and 3-Fluorobenzoic Acid. Journal of the Indian Institute of Science, 2005, 85 (6), 367-379. http://journal.library.iisc.ernet.in/index.php/iisc/article/view/2412

(5) Nandi, C. K.; Chakraborty, T. Hydrogen Bond-Induced Vibronic Mode Mixing in Benzoic Acid Dimer: A Laser-Induced Fluorescence. Study. J. Chem. Phys. 2004, 120 (18), 8521–8527. https://doi.org/10.1063/1.1695312

(4) Nandi, C. K.; Hazra, M. K.; Chakraborty, T. Conformational Effects on Vibronic Spectra and Excited State Dynamics of 3-Fluorobenzoic Acid Dimer. J. Chem. Phys. 2004, 121 (11), 5261–5271. https://doi.org/10.1063/1.1778383

(3) Nandi, C. K.; Hazra, M. K.; Chakraborty, T. Hydrogen Bond Mediated Rotor-Ring Coupling in Acetic Acid-Benzoic Acid Mixed Dimer. J. Chem. Phys. 2004, 121 (16), 7562–7564. https://doi.org/10.1063/1.1804496

(2) Das, A.; Nandi, C. K.; Chakraborty, T. Structure and Electronic Spectroscopy of Naphthalene-Acenaphthene van Der Waals Dimer: Hole-Burning, Dispersed Fluorescence, and Quantum Chemistry Calculations. J. Chem. Phys. 2003, 118 (21), 9589–9595. https://doi.org/10.1063/1.1569476

(1) Das, A.; Mahato, K. K.; Nandi, C. K.; Chakraborty, T.; Gadre, S. R.; Gokhale, N. A. Exciplex Emission from the Mixed Dimer of Naphthalene and 2-Cyanonaphthalene in a Supersonic Jet. Phys. Chem. Chem. Phys., 2002, 4, 2162-2168. https://doi.org/10.1039/b200124c

Patents

Book Chapters